Premium
STM of metal embedded and coated DNA and DNA–protein complexes
Author(s) -
MÜLLERREICHERT T.,
BUTT H.J.,
GROSS H.
Publication year - 1996
Publication title -
journal of microscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.569
H-Index - 111
eISSN - 1365-2818
pISSN - 0022-2720
DOI - 10.1046/j.1365-2818.1996.62426.x
Subject(s) - mica , dna , materials science , analytical chemistry (journal) , molecule , scanning tunneling microscope , metal , coating , crystallography , chemistry , nanotechnology , chromatography , composite material , organic chemistry , biochemistry , metallurgy
Bare and Pt/Ir/C‐coated DNA has been analysed using scanning tunnelling microscopy (STM). To achieve reproducible imaging of bare DNA on mica ethanol/air‐dried molecules were embedded in Pt/C. By peeling the metal film off the mica, the previously mica‐exposed side of the Pt/C‐film with the embedded DNA molecules was accessible for STM analysis. By applying this replica/anchoring technique only hollow trenches in the metal film, and not the DNA itself, could be visualized. The gaps averaged 3.1 nm (± 0.9 nm) wide and 1 nm (± 0.5 nm) deep. Using scanning force microscopy it could be confirmed that the DNA remained in the Pt/C film during the peel‐off procedure. For STM, DNA fragments were also coated with 0.7–1 nm Pt/Ir/C. Owing to the high Z‐resolution the STM samples were coated at a high elevation angle (65°), thereby minimizing the problem of self‐shadowing. Coating by Pt/Ir/C allowed routine imaging and quantitative analysis of both ethanol/air‐ and freeze‐dried DNA under atmospheric conditions. After ethanol/air drying measured values for DNA width and height were 5.1 nm (± 1.8 nm) and 0.9 nm (± 0.2 nm), respectively. Freeze‐dried DNA averaged 4.2 nm (± 1.3 nm) wide and 1.1 nm (± 0.1 nm) high. A Pt/Ir/C‐coating was also applied to visualize DNA–protein interaction using STM.