z-logo
Premium
The stress response is repressed during fermentation in brewery strains of yeast
Author(s) -
Brosnan M.P.,
Donnelly D.,
James T.C.,
Bond U.
Publication year - 2000
Publication title -
journal of applied microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.889
H-Index - 156
eISSN - 1365-2672
pISSN - 1364-5072
DOI - 10.1046/j.1365-2672.2000.01006.x
Subject(s) - brewing , yeast , saccharomyces cerevisiae , fermentation , sodium arsenite , heat shock protein , biology , strain (injury) , heat shock , industrial fermentation , saccharomyces , heat stress , shock (circulatory) , industrial microbiology , microbiology and biotechnology , biochemistry , chemistry , gene , medicine , zoology , arsenic , organic chemistry , anatomy
Yeast cells encounter a variety of environmental stresses during brewing and must respond to ensure cell survival. Cells can respond to stress by inducing a Heat Shock Response in which heat shock proteins (Hsps) are synthesized. In laboratory strains of Saccharomyces cerevisiae , the heat shock protein, Hsp104, plays a major role in the acquisition of tolerance to a variety of stresses such as heat, ethanol and sodium arsenite, and as such acts as an excellent stress indicator. The induction of Hsp104 in bottom‐and top‐fermenting brewery strains was examined when grown under laboratory and industrial fermentation conditions, and it was found that each brewing strain exhibits its own unique pattern of Hsp104 expression. During industrial fermentations, brewery strains are capable of mounting a stress response at the early stages of fermentation. However, as the fermentation proceeds, the response is repressed. The results suggest that conditions experienced in industrial brewing prevent the activation of the stress response. This study increases our understanding of alterations in gene expression patterns during the brewing process, and yields information that will aid in the definition of best practice in yeast management.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here