z-logo
Premium
Effects of enhanced nitrogen deposition and phosphorus limitation on nitrogen budgets of semi‐natural grasslands
Author(s) -
Phoenix Gareth K.,
Booth Rosemary E.,
Leake Jonathan R.,
Read David J.,
Grime J. Philip,
Lee John A.
Publication year - 2003
Publication title -
global change biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.146
H-Index - 255
eISSN - 1365-2486
pISSN - 1354-1013
DOI - 10.1046/j.1365-2486.2003.00660.x
Subject(s) - grassland , leaching (pedology) , deposition (geology) , calcareous , nitrogen , lysimeter , nitrate , environmental chemistry , environmental science , grazing , reactive nitrogen , phosphorus , mesocosm , volatilisation , ecosystem , chemistry , agronomy , ecology , soil science , soil water , botany , biology , paleontology , organic chemistry , sediment
Increased reactive atmospheric N deposition has been implicated in floristic changes in species‐rich acidic and calcareous grasslands, but the fate of this pollutant N in these ecosystems is unknown. This paper reports the first analysis of N budgets and N fluxes for two grasslands in the White Peak area of Derbyshire, one of the most heavily N‐polluted locations in the UK. N fluxes were monitored in lysimeter cores (retaining the original turfs) taken from field plots of unimproved acidic and calcareous grasslands that had received (in addition to ambient N deposition) simulated enhanced N deposition treatments of 3.5 and 14 g N m −2  yr −1 for 6 years. The influence of reducing phosphorus limitation was assessed by factorial additions of P. Seasonal leached losses of nitrate, ammonia and organic N were monitored in detail along with estimates of N removal through simulated grazing and gaseous losses through denitrification and volatilization. The rates of N fluxes by these pathways were used to create N budgets for the grasslands. Both grasslands were found to be accumulating much of the simulated additional N deposition: up to 89% accumulated in the calcareous grassland and up to 38% accumulated in the acidic grassland. The major fluxes of N loss from these grasslands were by simulated grazing and leaching of soluble organic N (constituting 90% of leached N under ambient conditions). Leached inorganic N (mainly nitrate) contributed significantly to the output flux of N under the highest N treatment only. Loss of N through ammonia volatilization accounted for less than 6% of the N added as simulated deposition, while denitrification contributed significantly to output fluxes only in the acidic grassland during winter. The implications of the results for ecosystem N balances and the likely consequences of N accumulation on these grasslands are discussed.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here