Premium
On removing the primary field from fixed‐wing time‐domain airborne electromagnetic data: some consequences for quantitative modelling, estimating bird position and detecting perfect conductors
Author(s) -
Smith Richard
Publication year - 2001
Publication title -
geophysical prospecting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.735
H-Index - 79
eISSN - 1365-2478
pISSN - 0016-8025
DOI - 10.1046/j.1365-2478.2001.00266.x
Subject(s) - time domain , position (finance) , component (thermodynamics) , quadrature (astronomy) , wing , resistive touchscreen , physics , acoustics , computer science , optics , finance , economics , computer vision , thermodynamics
In the process of removing the primary field from fixed‐wing time‐domain airborne EM data, the response is decomposed into two parts, which are referred to here as the time‐domain ‘in‐phase’ and ‘quadrature’ components. The time‐domain in‐phase component is dominated by the primary field, which varies significantly as the transmitter–receiver separation changes. The time‐domain quadrature component comes solely from the secondary response associated with currents induced in the ground and this is the component that has traditionally been used in the interpretation of data from fixed‐wing towed‐bird time‐domain EM systems. In the off‐time, the quadrature response is very similar to the total secondary response. However, there are large differences in the on‐time and even some small differences in the off‐time.One consequence of these differences is that when airborne EM data are to be interpreted using a synthetic mathematical model, the synthetic data calculated should also be the quadrature component. A second consequence relates to the time‐domain in‐phase component which is sometimes used to estimate the receiver‐sensor (bird) position. The bird‐position estimation process assumes there is no secondary field in the in‐phase component. If the ground is resistive, the secondary contained in the in‐phase component is small, so the bird‐position estimate is accurate to about 30 cm, but in highly conductive areas the secondary contribution can be large and the position estimate can be out by as much as 5 m. A third consequence arises for highly conductive bodies, the response of which is predominantly in‐phase. This means that any response from these types of body is lost in the component that has been removed in the primary‐field extraction procedure. However, if the bird position is measured very accurately, the actual free‐space primary field can be estimated. If this is then subtracted from the estimated primary (actually free‐space primary plus secondary in‐phase response), then the residual is the secondary in‐phase response of the ground. Using this methodology, very conductive ore bodies could be detected. However, a sensitivity analysis shows that detection of a large vertically dipping very conductive body at 150 m depth would require that the bird position be measured to an accuracy of about 1.4 cm and the aircraft attitude to within about 0.01°. Such tolerances are very stringent and not easily attainable with current technology.