Premium
Depth of detection of highly conducting and volume polarizable targets using induced polarization
Author(s) -
Apparao A.,
Srinivas G.S.,
Subrahmanya Sarma V.,
Thomas P.J.,
Joshi M.S.,
Rajendra Prasad P.
Publication year - 2000
Publication title -
geophysical prospecting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.735
H-Index - 79
eISSN - 1365-2478
pISSN - 0016-8025
DOI - 10.1046/j.1365-2478.2000.00212.x
Subject(s) - electrode array , electrode , polarization (electrochemistry) , excitation , planar array , polarizability , perpendicular , physics , optics , materials science , geometry , chemistry , mathematics , quantum mechanics , molecule
We define the apparent frequency effect in induced polarization (IP) as the relative difference between apparent resistivities measured using DC excitation on the one hand and high‐frequency excitation (when the IP effect vanishes) on the other. Assuming a given threshold for the minimum detectable anomaly in the apparent frequency effect, the depth of detection of a target by IP can be defined as that depth below which the target response is lower than the threshold for a given electrode array. Physical modelling shows that for the various arrays, the depth of detection of a highly conducting and volume polarizable target agrees closely with the depth of detection of an infinitely conducting and non‐polarized body of the same shape and size. The greatest depth of detection is obtained with a two‐electrode array, followed by a three‐electrode array, while the smallest depth of detection is obtained with a Wenner array when the array spread is in‐line (i.e. perpendicular to the strike direction). The depth of detection with a Wenner array improves considerably and is almost equal to that of a two‐electrode array when the array spread is broadside (i.e. along the strike direction).