z-logo
Premium
Spatio‐temporally regulated expression of receptor tyrosine kinases, mRor1, mRor2, during mouse development: implications in development and function of the nervous system
Author(s) -
Oishi Isao,
Takeuchi Shigeto,
Hashimoto Ryuju,
Nagabukuro Akira,
Ueda Takahiro,
Liu ZhaoJun,
Hatta Toshihisa,
Akira Shizuo,
Matsuda Yoichi,
Yamamura Hirohei,
Otani Hiroki,
Minami Yasuhiro
Publication year - 1999
Publication title -
genes to cells
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.912
H-Index - 115
eISSN - 1365-2443
pISSN - 1356-9597
DOI - 10.1046/j.1365-2443.1999.00234.x
Subject(s) - biology , receptor tyrosine kinase , nervous system , microbiology and biotechnology , ror1 , receptor protein tyrosine kinases , organogenesis , central nervous system , receptor , signal transduction , gene , genetics , neuroscience , platelet derived growth factor receptor , growth factor
Backgrounds Drosophila neurospecific receptor tyrosine kinases (RTKs), Dror and Dnrk, as well as Ror1 and Ror2 RTKs, isolated from human neuroblastoma, have been identified as a structurally related novel family of RTKs (Ror‐family RTKs). Thus far, little is known about the expression and function of mammalian Ror‐family RTKs. Results We have identified murine Ror‐family RTKs, mRor1 and mRor2. Both mRor1 and mRor2 genes are induced upon neuronal differentiation of P19EC cells. During neuronal differentiation in vitro , the expression of mRor2 is transiently induced, although that of mRor1 increases continuously. During embryogenesis, the mRor1 gene is expressed in the developing nervous system within restricted regions and in the developing lens epithelium. The expression of mRor1 is sustained in the nervous system and is also detected in non‐neuronal tissues after birth. In contrast, the expression of mRor2 is detected mainly in the developing nervous system within broader regions and declines after birth. Possible relationships of mRor1 and mRor2 genes with previously identified mutants have also been examined. Conclusions The developmental expressions of mRor1 and mRor2, in particular in the nervous system, are differentially regulated, reflecting their expression patterns in vitro . mRor1 and mRor2 may thus play differential roles during the development of the nervous system.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here