Premium
Dynamics of submerged macrophyte populations in response to biomanipulation
Author(s) -
Strand John A.,
Weisner Stefan E. B.
Publication year - 2001
Publication title -
freshwater biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.297
H-Index - 156
eISSN - 1365-2427
pISSN - 0046-5070
DOI - 10.1046/j.1365-2427.2001.00746.x
Subject(s) - macrophyte , biomanipulation , biomass (ecology) , elodea canadensis , environmental science , vegetation (pathology) , aquatic plant , ecology , myriophyllum , biology , eutrophication , nutrient , medicine , pathology
1. A 6‐year study (1992–97) of changes in submerged vegetation after biomanipulation was carried out in the eutrophicated Lake Finjasjön, Southern Sweden. Ten sites around the lake were revisited each year. At each site five samples of above‐ground biomass were taken at 10 cm water depth intervals. An investigation of the seed bank at the 10 sites, and a grazing experiment where birds and large fish were excluded was also conducted. 2. Between 1992 and 1996, in shallow areas (water depth < 3 m), vegetation cover increased from < 3 to 75% and above‐ground biomass from < 1 to 100 g DW m –2 . Mean outer water depth increased from 0.3 to 2.5 m. Elodea canadensis and Myriophyllum spicatum accounted for > 95% of the increase in biomass and plant cover. The following year (1997), however, cover and above‐ground biomass decreased, mainly attributable to the total disappearance of E. canadensis . Secchi depth increased after biomanipulation until 1996, but decreased again in 1997. 3. Total and mean number of submerged species increased after biomanipulation, probably as a result of the improved light climate. However, after the initial increase in species number there was a decrease during the following years, possibly attributed to competition from the rapidly expanding E. canadensis and M. spicatum. The lack of increase in species number after the disappearance of E. canadensis in 1997 implies that other factors also affected species richness. 4. A viable seed bank was not necessary for a rapid recolonization of submerged macrophytes, nor did grazing by waterfowl or fish delay the re‐colonization of submerged macrophytes. 5. Submerged macrophytes are capable of rapid recolonization if conditions improve, even in large lakes such as Finjasjön (11 km 2 ). Species that spread by fragments will increase rapidly and probably outcompete other species. 6. The results indicate that after the initial Secchi depth increase, probably caused by high zooplankton densities, submerged vegetation further improved the light climate. The decrease in macrophyte biomass in 1997 may have caused the observed increase in phosphorus and chlorophyll a , and the decrease in Secchi depth. We suggest that nutrient competition from periphyton, attached to the macrophytes, may be an important factor in limiting phytoplankton production, although other factors (e.g. zooplankton grazing) are also of importance, especially as triggers for the shift to a clear‐water state.