z-logo
Premium
Influence of soil composition on adsorption of glyphosate and phosphate by contrasting Danish surface soils
Author(s) -
Gimsing A. L.,
Borggaard O. K.,
Bang M.
Publication year - 2004
Publication title -
european journal of soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.244
H-Index - 111
eISSN - 1365-2389
pISSN - 1351-0754
DOI - 10.1046/j.1365-2389.2003.00585.x
Summary The herbicide glyphosate and inorganic phosphate are strongly adsorbed by inorganic soil components, especially aluminium and iron oxides, where they seem to compete for the same adsorption sites. Consequently, heavy phosphate application may exhaust soil's capacity to bind glyphosate, which may lead to pollution of drain‐ and groundwater. Adsorption of phosphate and glyphosate to five contrasting Danish surface soils was investigated by batch adsorption experiments. The different soils adsorbed different amounts of glyphosate and phosphate, and there was some competition between glyphosate and phosphate for adsorption sites, but the adsorption of glyphosate and phosphate seemed to be both competitive and additive. The competition was, however, less pronounced than found for goethite and gibbsite in an earlier study. The soil's pH seemed to be the only important factor in determining the amount of glyphosate and phosphate that could be adsorbed by the soils; consequently, glyphosate and phosphate adsorption by the soils was well predicted by pH, though predictions were somewhat improved by incorporation of oxalate‐extractable iron. Other soil factors such as organic carbon, the clay content and the mineralogy of the clay fraction had no effect on glyphosate and phosphate adsorption. The effect of pH on the adsorption of glyphosate and phosphate in one of the soils was further investigated by batch experiments with pH adjusted to 6, 7 and 8. These experiments showed that pH strongly influenced the adsorption of glyphosate. A decrease in pH resulted in increasing glyphosate adsorption, while pH had only a small effect on phosphate adsorption.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here