Premium
Losses of carbon and nitrogen with prolonged arable cropping from sandy soils of the South African Highveld
Author(s) -
Lobe I.,
Amelung W.,
Du Preez C. C.
Publication year - 2001
Publication title -
european journal of soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.244
H-Index - 111
eISSN - 1365-2389
pISSN - 1351-0754
DOI - 10.1046/j.1365-2389.2001.t01-1-00362.x
Subject(s) - soil water , silt , arable land , organic matter , environmental science , soil organic matter , total organic carbon , agronomy , erosion , soil science , chemistry , environmental chemistry , ecology , geology , biology , agriculture , paleontology
Summary A knowledge of the kinetics of organic matter transformations in arable soils is important for managing them sustainably. Our aim in this study was to elucidate the effects of cropping period on pools of C and N in coarse‐textured savanna soils of the South African Highveld. Composite samples were taken from the top 20 cm of soils (Plinthustalfs) that have been cropped for lengths of time varying from 0 to 98 years in each of three different agro‐ecosystems in the Free State Province of South Africa. Thereafter, soil organic C and N concentrations were determined in the bulk soil (< 2 mm) as well as in the clay (< 2 μm), silt (2–20 μm), fine sand (20–250 μm), and coarse sand (250–2000 μm) separates. Long‐term cultivation of native grassland reduced soil C and N concentrations by 65 and 55%, respectively. Losses of soil organic matter occurred from all particle‐size separates, although rate loss constants increased as particle size increased. The concentrations of organic C reached equilibrium after 34 years for the bulk soil and after 55 years for clay‐size separates. Nevertheless, organic matter attached to silt continued to be lost as the cropping continued, probably due to wind erosion. Changes in soil properties thereby continued even after almost 100 years of cultivation.