Premium
Abandoned anthills of Formica polyctena and soil heterogeneity in a temperate deciduous forest: morphology and organic matter composition
Author(s) -
Kristiansen S. M.,
Amelung W.
Publication year - 2001
Publication title -
european journal of soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.244
H-Index - 111
eISSN - 1365-2389
pISSN - 1351-0754
DOI - 10.1046/j.1365-2389.2001.00390.x
Subject(s) - podzol , organic matter , deciduous , soil water , soil organic matter , ecology , environmental science , botany , biology
Summary Ants can modify the properties of soil when they build their nests. We have investigated the degree and persistency of changes of soil morphology and chemistry in abandoned anthills in a temperate, deciduous wood in Jutland, Denmark. For this purpose, we sampled surface soils (0–10 cm) from each of five abandoned anthills ( Formica polyctena Förster) and adjacent undisturbed sites, where anthills covered about 0.5% of the surface area. In addition, one soil profile in an abandoned anthill was sampled for morphological descriptions. All samples were analysed for pH, C, N, lignin‐derived phenol, and cellulosic and non‐cellulosic carbohydrate concentrations. The results showed that soils under the anthills were enriched in organic matter, were yellower and showed features of Podzol degradation. Former Podzols had to be reclassified to Umbrisols or Arenosols, whereas anthills on Luvisols affected soil classification only at the subdivision level. The C/N ratio and soil pH were not significantly affected by the ants' activity. However, lignin‐derived phenols and cellulosic polysaccharides were enriched inside the mounds by a factor of 6 and 7, respectively. This probably reflected collection of woody debris for nest construction while the nest was occupied, and large input of C from an increased root density. The degree of changes in the quality of the organic matter decreased with time since abandonment, but changes were still detectable within anthills left 20 years ago. As ant colonies are concentrated, and move regularly on a decadal timescale, formation of Formica anthills has an intrinsic influence on the heterogeneity of the soil within this forest ecosystem.