Premium
Reduced flight capability in British Virgin Island populations of a wing‐dimorphic insect: the role of habitat isolation, persistence, and structure
Author(s) -
Denno Robert F.,
Hawthorne David J.,
Thorne Barbara L.,
Gratton Claudio
Publication year - 2001
Publication title -
ecological entomology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.865
H-Index - 81
eISSN - 1365-2311
pISSN - 0307-6946
DOI - 10.1046/j.1365-2311.2001.00293.x
Subject(s) - biology , habitat , ecology , biological dispersal , vegetation (pathology) , population , demography , medicine , pathology , sociology
Summary 1. The effects of habitat isolation, persistence, and host‐plant structure on the incidence of dispersal capability (per cent macroptery) in populations of the delphacid planthopper Toya venilia were examined throughout the British Virgin Islands. The host plant of this delphacid is salt grass Sporobolus virginicus , which grows either in undisturbed habitats (large expanses on intertidal salt flats and around the margins of salt ponds, or small patches of sparse vegetation on sand dunes along the shore), or in less persistent, disturbed habitats (managed lawns). 2. Both sexes of T. venilia were significantly more macropterous in disturbed habitats (77.1% in males, 12.5% in females) than in more persistent, undisturbed habitats (19.2% in males, < 1% in females). 3. Males exhibited significantly higher levels of macroptery (26.9 ± 7.6%) than did females (2.0 ± 1.7%), and per cent macroptery was positively density dependent for both sexes in field populations. 4. There was no evidence that the low incidence of female macroptery in a subset of island populations inhabiting natural habitats (1.7 ± 1.2%) was attributable to the effects of isolation on oceanic islands. The incidence of macroptery in British Virgin Island populations of T. venilia was not different from that observed in mainland delphacid species existing in habitats of similar duration. 5. Rather, the persistence of most salt grass habitats throughout the British Virgin Islands best explains the evolution of flight reduction in females of this island‐inhabiting delphacid. 6. Males were significantly more macropterous in populations occupying dune vegetation (37.6 ± 9.8%) than in populations occupying salt flat–pond margin habitats (7.6 ± 5.6%). By contrast, females exhibited low levels of macroptery in both dune (0%) and salt flat–pond margin (< 1%) habitats. Variation in salt‐grass structure probably underlies this habitat‐related difference in macroptery because flight‐capable males of planthoppers are better able to locate females in the sparse‐structured grass growing on dunes. This habitat‐related difference in male macroptery accounted for the generally higher level of macroptery observed in males than in females throughout the islands. 7. The importance of habitat persistence and structure in explaining the incidence of dispersal capability in T. venilia is probably indicative of the key role these two factors play in shaping the dispersal strategies of many insects.