Premium
Resistance to antibiotics used in dermatological practice
Author(s) -
Frank Espersen
Publication year - 1998
Publication title -
british journal of dermatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.304
H-Index - 179
eISSN - 1365-2133
pISSN - 0007-0963
DOI - 10.1046/j.1365-2133.1998.1390s3004.x
Subject(s) - clindamycin , antibiotics , erythromycin , antibiotic resistance , penicillin , medicine , tetracycline , propionibacterium acnes , microbiology and biotechnology , drug resistance , acne , dermatology , biology
The increased prevalence of bacterial resistance is one of the major problems of medicine today. Antibiotic resistance can be defined as the situation where the minimal inhibitory concentration is greater than the concentration obtainable in vivo . Resistance genes are easily transferred among bacteria, especially bacteria on skin and mucous membranes. In dermatological patients the most important resistance problems are found among staphylococci, Propionibacterium acnes and, to some extent, streptococci. Staphylococcus aureus strains have developed worldwide resistance to penicillin due to betalactamase production in >90% of cases, and methicillin resistance is now a major problem with resistance levels of >50% in certain areas of the world. These resistant strains are often multiresistant, and include resistance to erythromycin and tetracycline, with resistance to quinolone developing rapidly. Group A streptococci are still susceptible to penicillin, but increasing problems with erythromycin and tetracycline have been reported. After treatment with both systemic and oral antibiotics, P. acnes develops resistance in more than 50% of cases, and it is estimated that one in four acne patients harbours strains resistant to tetracycline, erythromycin, and clindamycin. To limit the development of antibiotic resistance, it is necessary to establish an antibiotic policy (prescription rules, reimbursement strategy, development of both national and local guidelines, and limitations on non‐medical use). Clinicians also need access to rapid diagnostic methods, including resistance testing. This may provide further data for surveillance systems, reporting both antibiotic consumption and resistance levels. The involvement of clinical doctors in teaching and research in this area is probably the most important aspect, along with their involvement in the formulation of national and local guidelines. In the future we may consider it more important to ensure that future patients can be offered antibiotic treatment, rather than focusing on the patient presenting today.