Premium
Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications
Author(s) -
Labiris N. R.,
Dolovich M. B.
Publication year - 2003
Publication title -
british journal of clinical pharmacology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.216
H-Index - 146
eISSN - 1365-2125
pISSN - 0306-5251
DOI - 10.1046/j.1365-2125.2003.01892.x
Subject(s) - medicine , mucociliary clearance , drug , respiratory tract , lung , aerosolization , drug delivery , pharmacology , intensive care medicine , respiratory system , inhalation , anesthesia , chemistry , organic chemistry
As the end organ for the treatment of local diseases or as the route of administration for systemic therapies, the lung is a very attractive target for drug delivery. It provides direct access to disease in the treatment of respiratory diseases, while providing an enormous surface area and a relatively low enzymatic, controlled environment for systemic absorption of medications. As a major port of entry, the lung has evolved to prevent the invasion of unwanted airborne particles from entering into the body. Airway geometry, humidity, mucociliary clearance and alveolar macrophages play a vital role in maintaining the sterility of the lung and consequently are barriers to the therapeutic effectiveness of inhaled medications. In addition, a drug's efficacy may be affected by where in the respiratory tract it is deposited, its delivered dose and the disease it may be trying to treat.