z-logo
Premium
Therapeutic drug monitoring: antiarrhythmic drugs
Author(s) -
Campbell T. J.,
Williams K. M.
Publication year - 1998
Publication title -
british journal of clinical pharmacology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.216
H-Index - 146
eISSN - 1365-2125
pISSN - 0306-5251
DOI - 10.1046/j.1365-2125.1998.t01-1-00768.x
Subject(s) - sotalol , amiodarone , verapamil , medicine , diltiazem , drug , pharmacology , digoxin , antiarrhythmic agent , sodium channel blocker , anti arrhythmia agents , sodium channel , heart failure , calcium , heart disease , sodium , chemistry , atrial fibrillation , organic chemistry
Antiarrhythmic agents are traditionally classified according to Vaughan Williams into four classes of action. Class I antiarrhythmic agents include most of the drugs traditionally thought of as antiarrhythmics, and have as a common action, blockade of the fast‐inward sodium channel on myocardium. These agents have a very significant toxicity, and while they are being used less, therapeutic drug monitoring (TDM) does significantly increase the safety with which they can be administered. Class II agents are antisympathetic drugs, particularly the β‐adrenoceptor blockers. These are generally safe agents which do not normally require TDM. Class III antiarrhythmic agents include sotalol and amiodarone. TDM can be useful in the case of amiodarone to monitor compliance and toxicity but is generally of little value for sotalol. Class IV antiarrhythmic drugs are the calcium channel blockers verapamil and diltiazem. These are normally monitored by haemodynamic effects, rather than using TDM. Other agents which do not fall neatly into the Vaughan Williams classification include digoxin and perhexiline. TDM is very useful for monitoring the administration (and particularly the safety) of both of these agents.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here