Premium
Effects of in vitro exposure to ozone and/or hyperoxia on superoxide dismutase, catalase, glutathione and lipid peroxidation in red blood cells and plasma of rainbow trout, Oncorhynchus mykiss (Walbaum)
Author(s) -
Ritola O,
Peters L D,
Livingstone D R,
LindströmSeppä P
Publication year - 2002
Publication title -
aquaculture research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.646
H-Index - 89
eISSN - 1365-2109
pISSN - 1355-557X
DOI - 10.1046/j.1365-2109.2002.00649.x
Subject(s) - lipid peroxidation , hyperoxia , catalase , superoxide dismutase , glutathione , antioxidant , biochemistry , chemistry , biology , oxygen , enzyme , organic chemistry
In aquaculture, ozone is used as a disinfectant. In its production, extensive amounts of oxygen are formed resulting in hyperoxic conditions in culture units. Both ozone and hyperoxia have the potential to be toxic via pro‐oxidant mechanisms and to activate antioxidant defence systems in cultured species. To eliminate systemic effects, blood of rainbow trout, Oncorhynchus mykiss (Walbaum), was exposed in vitro for 5 min to ozone/hyperoxia or hyperoxia, and changes in antioxidant defences and lipid peroxidation were measured after exposure. Ozone exposure caused severe damage in red blood cells (rbc) detected as increased lipid peroxidation and oxidized glutathione (GSSG) levels in both plasma and rbc. Oxygen exposure alone increased intracellular lipid peroxidation and GSSG levels 10 min after exposure and was not evident in the plasma at any time. Ozone, but not oxygen exposure, decreased reduced glutathione (GSH) levels in plasma, and the changes were negatively correlated with increased lipid peroxidation in rbc, indicating that extracellular GSH has a dynamic role in the protection of rbc from direct oxidation by ozone. Both ozone and hyperoxic conditions increased superoxide dismutase (SOD) activity in rbc 3 and 6 h after exposure. In contrast, catalase activity was only increased 10 min after oxygen exposure, suggesting other catalase activation mechanisms rather than enzyme induction. The recovery of lipid peroxidation and GSSG levels in rbc after hyperoxia, but not ozone exposure, indicated a capacity to defend against hyperoxia‐produced oxidative damage, but an overwhelming of antioxidant defences by ozone in rainbow trout rbc in vitro .