
Localization of hrpA ‐induced Pseudomonas syringae pv. tomato DC3000 in infected tomato leaves
Author(s) -
Boureau Tristan,
Routtu Jarkko,
Roine Elina,
Taira Suvi,
Romantschuk Martin
Publication year - 2002
Publication title -
molecular plant pathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.945
H-Index - 103
eISSN - 1364-3703
pISSN - 1464-6722
DOI - 10.1046/j.1364-3703.2002.00139.x
Subject(s) - pseudomonas syringae , biology , pilin , microbiology and biotechnology , bacteria , virulence , type three secretion system , pilus , secretion , population , apoplast , pseudomonadaceae , pseudomonas , gene , botany , pathogen , genetics , cell wall , biochemistry , demography , sociology
SUMMARY Pseudomonas syringae pv. tomato is the causative agent of bacterial speck of tomato. The key virulence determinant of P. syringae is the hrp gene cluster, which encodes a type III secretion system. The type III system is used by a wide variety of pathogenic bacteria for transporting virulence proteins from the bacteria directly into the eukaryotic host cell. Hrp pilus, which is composed of HrpA pilin subunits, is an indispensable component of the type III secretion system in P. syringae. Here we have determined the spatial and temporal expression pattern of hrpA of P. syringae DC3000 in intact leaves, using a HrpA‐GFP protein fusion and confocal microscopy. The hrpA gene was strongly and rapidly induced inside the leaf tissues after infiltration of the bacteria. After spray‐inoculation, hrpA ‐induced bacteria were detected endophytically 72 h post‐inoculation, and 96 h after spray‐inoculation, disease symptoms appeared and GFP‐expressing bacteria were observed at symptom sites, both endo‐ and epiphytically. Live/dead staining of the bacteria showed that Pst DC3000 does not survive well on leaf surfaces. Apoplastic populations were apparently bursting on to the leaf surface through stomata. Kinetics of population sizes of wild‐type DC3000 and hrpA − showed significant differences, initially endophytically and only later epiphytically. Our results suggest that the Hrp pilus is first induced in the apoplast and apparently functions mainly inside the leaf tissues. These results suggest that P. syringae DC3000 mainly multiplies endophytically.