Premium
A cardiac sodium channel mutation identified in Brugada syndrome associated with atrial standstill
Author(s) -
Takehara N.,
Makita N.,
Kawabe J.,
Sato N.,
Kawamura Y.,
Kitabatake A.,
Kikuchi K.
Publication year - 2004
Publication title -
journal of internal medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.625
H-Index - 160
eISSN - 1365-2796
pISSN - 0954-6820
DOI - 10.1046/j.0954-6820.2003.01247.x
Subject(s) - medicine , brugada syndrome , sodium channel , cardiology , mutation , sodium , genetics , gene , chemistry , organic chemistry , biology
. Takehara N, Makita N, Kawabe J, Sato N, Kawamura Y, Kitabatake A, Kikuchi K (Asahikawa Medical College, Asahikawa; Hokkaido University Graduate School of Medicine, Sapporo, Japan; and Cardiovascular Research Institute, Newark, NY, USA). A cardiac sodium channel mutation identified in Brugada syndrome associated with atrial standstill (Case Report). J Intern Med 2004; 255: 137–142. Mutations in the cardiac Na + channel gene SCN5A are responsible for multiple lethal ventricular arrhythmias including Brugada syndrome and congenital long QT syndrome. Here we report a case of Brugada syndrome with ST elevation in the right precordial and inferior leads accompanied by atrial standstill and spontaneous ventricular fibrillation. Atrial standstill and J wave elevation were provoked by procainamide. Genetic analysis revealed a missense mutation (R367H) in SCN5A . The resultant mutant Na + channel was nonfunctional when expressed heterologously in Xenopus oocytes. Our study suggests that genetic defects in SCN5A may be associated with atrial standstill in combination with ventricular arrhythmias.