Premium
Antisense oligodeoxynucleotide‐induced suppression of basal forebrain NMDA‐NR1 subunits selectively impairs visual attentional performance in rats
Author(s) -
Turchi Janita,
Sarter Martin
Publication year - 2001
Publication title -
european journal of neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.346
H-Index - 206
eISSN - 1460-9568
pISSN - 0953-816X
DOI - 10.1046/j.0953-816x.2001.01610.x
Subject(s) - basal forebrain , nmda receptor , neuroscience , forebrain , basal (medicine) , psychology , microbiology and biotechnology , chemistry , biology , endocrinology , receptor , biochemistry , central nervous system , insulin
It is generally agreed that basal forebrain neuronal circuits contribute to the mediation of the ability to detect, select and discriminate signals, to suppress the processing of irrelevant information, and to allocate processing resources to competing tasks. Rats were trained in a task designed to assess sustained attention, or in a cued discrimination task that did not tax attentional processes. Animals were equipped with guide cannula to infuse bilaterally antisense oligodeoxynucleotides (ODNs) against the N ‐methyl‐ d ‐aspartate (NMDA) NR1 subunits, or missense ODNs, into the substantia innominata of the basal forebrain. Infusions of antisense or missense ODNs did not affect cued visual discrimination performance. Infusions of antisense ODNs dose‐dependently impaired sustained attention performance by selectively decreasing the animals' ability to detect signals while their ability to reject nonsignal trials remained unchanged. The detrimental attentional effects of antisense infusions were maximal 24 h after the third and final infusion, and performance returned to baseline 24 h later. Missense infusions did not affect attentional performance. Separate experiments demonstrated extensive suppression of NR1 subunit immunoreactivity in the substantia innominata. Furthermore, infusions of antisense did not produce neurotoxic effects in that region as demonstrated by the Fluoro‐Jade method. The present data support the hypothesis that NMDA receptor (NMDAR) stimulation in the basal forebrain, largely via glutamatergic inputs originating in the prefrontal cortex, represents a necessary mechanism to activate the basal forebrain corticopetal system for mediation of attentional performance.