z-logo
Premium
Monomethacrylate co‐monomers for dental resins
Author(s) -
Labella Roberto,
Davy Kenneth W. M.,
Lambrechts Paul,
Meerbeek Bart Van,
Vanherle Guido
Publication year - 1998
Publication title -
european journal of oral sciences
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 0.802
H-Index - 93
eISSN - 1600-0722
pISSN - 0909-8836
DOI - 10.1046/j.0909-8836.1998.eos106308.x
Subject(s) - monomer , methacrylate , benzoyl peroxide , polymer chemistry , polymerization , shrinkage , materials science , intrinsic viscosity , chemistry , polymer , composite material
Polymerisation shrinkage is widely recognised as a major drawback of resin based dental restoratives. Bis-GMA is often employed as the principal dimethacrylate monomer. Due to its high viscosity, Bis-GMA is normally mixed with large proportions of low viscosity glycol dimethacrylates. The purpose of this study was to determine whether the polymerisation shrinkage of Bis-GMA-based resins would be lower if alternative monomethacrylate co-monomers were used in place of conventional dimethacrylate co-monomers as viscosity modifiers. Conventional resins used were ethyleneglycol dimethacrylate and triethyleneglycol dimethacrylate; the alternative monofunctional co-monomers were tetrahydrofurfuryl methacrylate, hydroxypropyl methacrylate and isobornyl methacrylate. Model resins containing 54% mol/mol of co-monomer in Bis-GMA and 1% w/w of benzoyl peroxide as initiator were heat-cured at 70 degrees C for 8 h. Polymerisation shrinkage, degree of conversion and concentration of remaining methacrylate groups were calculated from density changes obtained gravimetrically. Other properties evaluated were Young's modulus, water uptake and viscosity of the monomer mixtures. The Bis-GMA-based resins exhibited lower shrinkage when mixed using the monomethacrylates rather than with conventional glycol dimethacrylates. Among the alternative co-monomers, tetrahydrofurfuryl methacrylate conferred the best balance of all measured properties.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here