z-logo
Premium
Stepwise accumulation and ascent of magmas
Author(s) -
Bons P. D.,
DoughertyPage J.,
Elburg M. A.
Publication year - 2001
Publication title -
journal of metamorphic geology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.639
H-Index - 114
eISSN - 1525-1314
pISSN - 0263-4929
DOI - 10.1046/j.0263-4929.2001.00334.x
Subject(s) - geology , magma , magma chamber , viscosity , petrology , geochemistry , volcano , thermodynamics , physics
One of the currently popular theories on magma ascent is that it mainly occurs by propagating hydrofractures (dykes) and that magma viscosity is the primary rate‐controlling factor. This theory is based on mathematical models for single hydrofractures under idealised conditions. We simulated magma ascent with air ascending through gelatine and observed that the air ascended in batches, following paths made by their predecessors. Multiple batches accumulate at obstacles along the path. Although magma viscosity may control ascent rate during movement, obstacles ultimately control the size and average ascent velocity of ascending batches. We propose that step‐wise movement of magma batches is the mechanism of primary accumulation and ascent from the partially molten source rock of a magma to its first emplacement site and therefore the main ascent mechanism for granitic magmas. ‘Classical’ dyking is the mechanism for secondary ascent from a magma chamber.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here