Premium
Study of carbon fibres and carbon–carbon composites by scanning thermal microscopy
Author(s) -
Blanco C.,
Appleyard S. P.,
Rand B.
Publication year - 2002
Publication title -
journal of microscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.569
H-Index - 111
eISSN - 1365-2818
pISSN - 0022-2720
DOI - 10.1046/j.0022-2720.2001.00974.x
Subject(s) - scanning thermal microscopy , thermal conductivity , materials science , composite material , characterization (materials science) , carbon fibers , reinforced carbon–carbon , composite number , thermal , matrix (chemical analysis) , carbon nanotube , optical microscope , thermal analysis , microscopy , scanning electron microscope , nanotechnology , optics , physics , meteorology
Summary Scanning thermal microscopy (SThM) is a relatively new technique based on atomic force microscopy in which the tip is replaced by an ultra‐miniature temperature probe. This paper reports on a preliminary investigation of the application of SThM in the characterization of the thermal properties of carbon fibres and carbon–carbon (CC) composites. The technique enabled a comparative study to be made of discrete fibre and matrix thermal properties in a series of model unidirectional composites. The thermal images revealed a marked increase in thermal conductivity of the matrix with increasing temperature of treatment and hence confirmed the development of a highly ordered carbon matrix. The results were in qualitative agreement with previously determined values of thermal conductivity from which the separate values of fibre and matrix thermal conductivity had been derived. The technique was also applied to the characterization of samples of unknown processing history, enabling an estimation to be made of the heat treatment and type of the fibres and matrix present in the composite. It was concluded that SThM promises to be a powerful technique for the study of the thermal properties of CC composites and carbon fibres, as it uniquely enables variations in local thermal conductivity to be detected and resolved. Absolute quantification of the technique remains the key to its future widespread acceptance in materials characterization.