z-logo
open-access-imgOpen Access
miR-210 transferred by lung cancer cell-derived exosomes may act as proangiogenic factor in cancer-associated fibroblasts by modulating JAK2/STAT3 pathway
Author(s) -
Junqiang Fan,
Guanxin Xu,
Zhibo Chang,
Ling Zhu,
Jie Yao
Publication year - 2020
Publication title -
clinical science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.91
H-Index - 138
eISSN - 1470-8736
pISSN - 0143-5221
DOI - 10.1042/cs20200039
Subject(s) - angiogenesis , microvesicles , cancer research , cancer associated fibroblasts , microrna , vascular endothelial growth factor , biology , stat3 , tumor microenvironment , microbiology and biotechnology , signal transduction , biochemistry , tumor cells , vegf receptors , gene
It has been generally believed that cancer-associated fibroblasts (CAFs) have the ability to increase the process of tumor angiogenesis. However, the potential mechanisms by which cancer-derived exosomes in lung cancer (LC) remains to be investigated. LC-derived exosomes were administrated to NIH/3T3 cells. A variety of experiments were conducted to investigate the proangiogenic factors of CAFs, including Western blot, RT-PCR, colony formation assay, tube formation assay, Matrigel plug assay et al. In addition, the impact of JAK2/STAT3 signaling pathway were also explored. The role of hsa-miR-210 was identified with microarray profiling and validated in vitro and in vivo assays. The target of miR-210 was screened by RNA pull down, RNA-sequencing and then verified. It was shown that LC-derived exosomes could induce cell reprogramming, thus promoting the fibroblasts transferring into CAFs. In addition, the exosomes with overexpressed miR-210 could increase the level of angiogenesis and vice versa, which suggested the miR-210 secreted by the LC-derived exosomes may initiate the CAF proangiogenic switch. According to our analysis, the miR-210 had the ability of elevating the expression of some proangiogenic factors such as MMP9, FGF2 and vascular endothelial growth factor (VEGF) a (VEGFa) by activating the JAK2/STAT3 signaling pathway, ten-eleven translocation 2 (TET2) was identified as the target of miR-210 in CAFs which has been involved in proangiogenic switch. miR-210 was overexpressed in serum exosomes of untreated non-small cell LC (NSCLC) patients. We concluded that the promotion effect of exosomal miR-210 on proangiogenic switch of CAFs may be explained by the modulation of JAK2/STAT3 signaling pathway and TET2 in recipient fibroblasts.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here