Open Access
Tumoral PD-1hiCD8+ T cells are partially exhausted and predict favorable outcome in triple-negative breast cancer
Author(s) -
Liang Guo,
Chunmei Cao,
Shyamal Goswami,
Xiaoyan Huang,
Linxiaoxi Ma,
Yicheng Guo,
Benlong Yang,
Teng Li,
Yayun Chi,
Xiaoming Zhang,
Jiong Wu
Publication year - 2020
Publication title -
clinical science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.91
H-Index - 138
eISSN - 1470-8736
pISSN - 0143-5221
DOI - 10.1042/cs20191261
Subject(s) - cd8 , stromal cell , tissue microarray , flow cytometry , cytotoxic t cell , immune system , cancer research , triple negative breast cancer , population , breast cancer , t cell , pd l1 , biology , phenotype , immunohistochemistry , pathology , cancer , immunology , medicine , immunotherapy , in vitro , biochemistry , environmental health , gene
Tumor-infiltrating PD-1hi dysfunctional CD8+ T cells have been identified in several tumors but largely unexplored in breast cancer (BC). Here we aimed to extensively explore PD-1hiCD8+ T cells in BC, focusing on the triple-negative BC (TNBC) subtype. Flow cytometry was used to study the phenotypes and functions of CD8+ T-cell subsets in peripheral blood and surgical specimens from treatment-naive BC patients. RNA-seq expression data generated to dissect the molecular features of tumoral PD-1neg, PD-1lo and PD-1hi CD8+ T cells. Further, the associations between tumoral PD-1hi CD8+ T cells and the clinicopathological features of 503 BC patients were explored. Finally, multiplexed immunohistochemistry (mIHC) was performed to evaluate in situ PD-1hiCD8+ T cells on the tissue microarrays (TMAs, n=328) for prognostic assessment and stratification of TNBC patients. PD-1hiCD8+ T cells found readily detectable in tumor tissues but rarely in peripheral blood. These cells shared the phenotypic and molecular features with exhausted and tissue-resident memory T cells (TRM) with a skewed TCR repertoire involvement. Interestingly, PD-1hiCD8+ T cells are in the state of exhaustion characterized by higher T-BET and reduced EOMES expression. PD-1hiCD8+ T cells found preferentially enriched within solid tumors, but predominant stromal infiltration of PD-1hiCD8+ T subset was associated with improved survival in TNBC patients. Taken together, tumoral PD-1hiCD8+ T-cell subpopulation in BC is partially exhausted, and their abundance signifies ‘hot’ immune status with favorable outcomes. Reinvigorating this population may provide further therapeutic opportunities in TNBC patients.