
Alamandine attenuates hepatic fibrosis by regulating autophagy induced by NOX4-dependent ROS
Author(s) -
Yun Huang,
Li Yang,
Anni Lou,
Guo Zhen Wang,
Ye Hu,
Yijie Zhang,
Wei-Chang Huang,
Jun Wang,
Yue Li,
Xintao Zhu,
Tingting Chen,
Jiayi Lin,
Ying Meng,
Li Xu
Publication year - 2020
Publication title -
clinical science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.91
H-Index - 138
eISSN - 1470-8736
pISSN - 0143-5221
DOI - 10.1042/cs20191235
Subject(s) - nox4 , autophagy , hepatic stellate cell , angiotensin ii , hepatic fibrosis , reactive oxygen species , fibrosis , chemistry , nadph oxidase , oxidative stress , renin–angiotensin system , endocrinology , microbiology and biotechnology , medicine , receptor , biology , biochemistry , apoptosis , blood pressure
Angiotensin II (Ang II) has been reported to aggravate hepatic fibrosis by inducing NADPH oxidase (NOX)-dependent oxidative stress. Alamandine (ALA) protects against fibrosis by counteracting Ang II via the MAS-related G-protein coupled (MrgD) receptor, though the effects of alamandine on hepatic fibrosis remain unknown. Autophagy activated by reactive oxygen species (ROS) is a novel mechanism of hepatic fibrosis. However, whether autophagy is involved in the regulation of Ang II-induced hepatic fibrosis still requires investigation. We explored the effect of alamandine on hepatic fibrosis via regulation of autophagy by redox balance modulation. In vivo, alamandine reduced CCl4-induced hepatic fibrosis, hydrogen peroxide (H2O2) content, protein levels of NOX4 and autophagy impairment. In vitro, Ang II treatment elevated NOX4 protein expression and ROS production along with up-regulation of the angiotensin converting enzyme (ACE)/Ang II/Ang II type 1 receptor (AT1R) axis. These changes resulted in the accumulation of impaired autophagosomes in hepatic stellate cells (HSCs). Treatment with NOX4 inhibitor VAS2870, ROS scavenger N-acetylcysteine (NAC), and NOX4 small interfering RNA (siRNA) inhibited Ang II-induced autophagy and collagen synthesis. Alamandine shifted the balance of renin–angiotensin system (RAS) toward the angiotensin converting enzyme 2 (ACE2)/alamandine/MrgD axis, and inhibited both Ang II-induced ROS and autophagy activation, leading to attenuation of HSCs migration or collagen synthesis. In summary, alamandine attenuated liver fibrosis by regulating autophagy induced by NOX4-dependent ROS.