
Neuron-derived orphan receptor-1 modulates cardiac gene expression and exacerbates angiotensin II-induced cardiac hypertrophy
Author(s) -
Laia Cañes,
Íngrid Martí-Pàmies,
Carme Ballester-Servera,
Adela HerraizMartínez,
Judith Alonso,
María Galán,
J. Francisco Nistal,
Pedro Muniesa,
Jesús Osada,
Leif HoveMadsen,
Cristina Rodrı́guez,
José Martínez-González
Publication year - 2020
Publication title -
clinical science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.91
H-Index - 138
eISSN - 1470-8736
pISSN - 0143-5221
DOI - 10.1042/cs20191014
Subject(s) - neuron , medicine , cardiac hypertrophy , angiotensin ii , endocrinology , angiotensin receptor , receptor , muscle hypertrophy , cardiology , biology , neuroscience
Hypertensive cardiac hypertrophy (HCH) is a common cause of heart failure (HF), a major public health problem worldwide. However, the molecular bases of HCH have not been completely elucidated. Neuron-derived orphan receptor-1 (NOR-1) is a nuclear receptor whose role in cardiac remodelling is poorly understood. The aim of the present study was to generate a transgenic mouse over-expressing NOR-1 in the heart (TgNOR-1) and assess the impact of this gain-of-function on HCH. The CAG promoter-driven transgenesis led to viable animals that over-expressed NOR-1 in the heart, mainly in cardiomyocytes and also in cardiofibroblasts. Cardiomyocytes from TgNOR-1 exhibited an enhanced cell surface area and myosin heavy chain 7 (Myh7)/Myh6 expression ratio, and increased cell shortening elicited by electric field stimulation. TgNOR-1 cardiofibroblasts expressed higher levels of myofibroblast markers than wild-type (WT) cells (α 1 skeletal muscle actin (Acta1), transgelin (Sm22α)) and were more prone to synthesise collagen and migrate. TgNOR-1 mice experienced an age-associated remodelling of the left ventricle (LV). Angiotensin II (AngII) induced the cardiac expression of NOR-1, and NOR-1 transgenesis exacerbated AngII-induced cardiac hypertrophy and fibrosis. This effect was associated with the up-regulation of hypertrophic (brain natriuretic peptide (Bnp), Acta1 and Myh7) and fibrotic markers (collagen type I α 1 chain (Col1a1), Pai-1 and lysyl oxidase-like 2 (Loxl2)). NOR-1 transgenesis up-regulated two key genes involved in cardiac hypertrophy (Myh7, encoding for β-myosin heavy chain (β-MHC)) and fibrosis (Loxl2, encoding for the extracellular matrix (ECM) modifying enzyme, Loxl2). Interestigly, in transient transfection assays, NOR-1 drove the transcription of Myh7 and Loxl2 promoters. Our findings suggest that NOR-1 is involved in the transcriptional programme leading to HCH.