
Defining the physiological determinants of low nitrogen requirement in wheat
Author(s) -
Nick Fradgley,
Alison R. Bentley,
Stéphanie M. Swarbreck
Publication year - 2021
Publication title -
biochemical society transactions
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.562
H-Index - 144
eISSN - 1470-8752
pISSN - 0300-5127
DOI - 10.1042/bst20200282
Subject(s) - limiting , productivity , production (economics) , nutrient , sink (geography) , agronomy , environmental science , ecosystem , nitrogen , agricultural engineering , canopy , natural resource economics , ecology , economics , biology , microeconomics , chemistry , engineering , geography , mechanical engineering , cartography , organic chemistry , macroeconomics
Nitrogen (N) is a major nutrient limiting productivity in many ecosystems. The large N demands associated with food crop production are met mainly through the provision of synthetic N fertiliser, leading to economic and ecological costs. Optimising the balance between N supply and demand is key to reducing N losses to the environment. Wheat (Triticum aestivum L.) production provides food for millions of people worldwide and is highly dependent on sufficient N supply. The size of the N sink, i.e. wheat grain (number, size, and protein content) is the main driver of high N requirement. Optimal functioning of temporary sinks, in particular the canopy, can also affect N requirement. N use efficiency (i.e. yield produced per unit of N available) tends to be lower under high N conditions, suggesting that wheat plants are more efficient under low N conditions and that there is an optimal functioning yet unattained under high N conditions. Understanding the determinants of low N requirement in wheat would provide the basis for the selection of genetic material suitable for sustainable cereal production. In this review, we dissect the drivers of N requirement at the plant level along with the temporal dynamics of supply and demand.