miR-125 inhibits colorectal cancer proliferation and invasion by targeting TAZ
Author(s) -
Meiyuan Yang,
Xiaoli Tang,
Zheng Wang,
Xiaoqing Wu,
Dong Tang,
Daorong Wang
Publication year - 2019
Publication title -
bioscience reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 77
eISSN - 1573-4935
pISSN - 0144-8463
DOI - 10.1042/bsr20190193
Subject(s) - microrna , gene knockdown , cancer research , cell growth , carcinogenesis , colorectal cancer , biology , blot , cancer , cell culture , gene , genetics
Colorectal cancer (CRC) is the third most common malignant tumor worldwide and is a serious threat to human health. MicroRNAs (miRNAs) play a key role in oncogenesis and cancer progression. MiRNA-125 (miR-125) is an important miRNA that is dysregulated in several kinds of cancers. Thus, we investigated the expression and effects of miR-125 and Transcriptional co-activator with PDZ-binding motif (TAZ) for a better understanding of the underlying mechanism of tumor progression in CRC, which may provide an emerging biomarker for diagnosis and treatment of CRC. We measured the expression levels of miR-125 in CRC tissues, adjacent tissues, and cell lines (e.g. HCT116, SW480, FHC) by quantitative real-time polymerase chain reaction (qRT-PCR). The effect of miR-125 on proliferation and invasion in CRC cells was detected by Cell Counting Kit-8 (CCK-8), clone formation assay, and transwell assay. Western blotting and qRT-PCR were used to investigate the expression of TAZ after knocking down miR-125 in HCT116 cells or overexpressing miR-125 in SW480 cells. MiR-125 was significantly down-regulated in CRC compared with pericarcinomatous tissue from 18 patients. An miR-125 inhibitor promoted CRC cell proliferation and invasion, while miR-125 mimic had the opposite effect. Moreover, we found that TAZ was an miR-125 target and the siRNA knockdown of TAZ could reverse the effect of the miR-125 inhibitor on proliferation and invasion in HCT116 cells. The present study shows that miR-125 suppresses CRC proliferation and invasion by targeting TAZ.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom