Steroid receptor coactivator-1 interacts with NF-κB to increase VEGFC levels in human thyroid cancer
Author(s) -
Bo Gao,
Lingji Guo,
Donglin Luo,
Yan Jiang,
Jianjie Zhao,
Chengyi Mao,
Yan Xu
Publication year - 2018
Publication title -
bioscience reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 77
eISSN - 1573-4935
pISSN - 0144-8463
DOI - 10.1042/bsr20180394
Subject(s) - vascular endothelial growth factor c , cancer research , thyroid cancer , biology , gene knockdown , medicine , endocrinology , proto oncogene tyrosine protein kinase src , lymphatic system , coactivator , thyroid , vascular endothelial growth factor , vascular endothelial growth factor a , transcription factor , receptor , immunology , cell culture , biochemistry , genetics , gene , vegf receptors
Thyroid cancer is the most common endocrine cancer, and has a high incidence of lymphatic metastasis. Vascular endothelial growth factor C (VEGFC) is essential for development of lymphatic vessels and lymphatic metastases during carcinogenesis. Steroid receptor coactivator-1 (SRC-1) interacts with nuclear receptors and transcription factors to promote tumor proliferation and metastasis. However, the correlation between SRC-1 and VEGFC levels in the lymphatic metastases of thyroid cancer remains unclear. We analyzed 20-paired specimens of thyroid cancer tissue and normal thyroid tissue and found increased levels of SRC-1 and VEGFC proteins in 13/20 and 15/20 thyroid cancer specimens, respectively, when compared with those levels in specimens of normal thyroid tissue. A high level of SRC-1 expression was positively correlated with VEGFC and lymphatic endothelial cell marker LYVE-1 expression. Papillary thyroid carcinoma cell line TPC-1 displayed high levels of SRC-1 and VEGFC expression and was selected for stable knockdown of SRC-1 in vitro Inhibition of SRC-1 significantly reduced the VEGFC levels in TPC-1 cells. We found that SRC-1 binds to transcription factor NF-kB (p50/p65), and that this coactivation complex directly promoted VEGFC transcription, which could be abrogated by SRC-1 knockdown. Up-regulated NF-kB signaling was also confirmed in thyroid cancer tissues. In vivo studies showed that SRC-1 knockdown restricted tumor growth, reduced the numbers of LYVE-1-positive lymphatic vessels, and decreased the levels of VEGFC in tumor tissues. These results suggest a tumorigenic role for SRC-1 in thyroid cancer via its ability to regulate VEGFC expression.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom