z-logo
open-access-imgOpen Access
miRNA-1284, a regulator of HMGB1, inhibits cell proliferation and migration in osteosarcoma
Author(s) -
Shuai Lv,
Meng Guan
Publication year - 2018
Publication title -
bioscience reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 77
eISSN - 1573-4935
pISSN - 0144-8463
DOI - 10.1042/bsr20171675
Subject(s) - transfection , osteosarcoma , vimentin , microrna , cell migration , cell growth , cell culture , cell , epithelial–mesenchymal transition , cancer research , viability assay , microbiology and biotechnology , chemistry , biology , downregulation and upregulation , gene , immunology , immunohistochemistry , biochemistry , genetics
Previous literatures have reported the role of human micro RNA-1284 (hsa-miR-1284, in short miR-1284) in diverse cancers. However, its biological function in osteosarcoma pathogenesis remains unknown. In the present study, we investigated the potential role of miR-1284 in osteosarcoma. Expression of miR-1284 and high mobility group box 1 (HMGB1) were examined in 80 tissues obtained from 40 patients. MiR-1284 level was measured in five osteosarcoma cell lines. Relative luciferase activity and HMGB1 expression were examined in MG-63 and U2OS cells transfected with wild-type or mutant 3'-UTR of HMGB1 in the presence of miR-1284 mimics or miR-NC. Cell viability, colony formation, and cell migration were measured in MG-63, U2OS and hFOB 1.19 cells, which were transfected with miR-1284 mimics or miR-NC. In the rescue experiments, recombinant HMGB1 plasmid was transfected into MG-63 and U2OS cells, and cell viability and migration were determined again. Our results indicated that relative level of miR-1284 was lower in tumor tissues compared with its adjacent tissues and it was found suppressed at lower levels in MG-63 and U2OS cell lines. Expression of HMGB1 is significantly elevated in tumor tissues and negatively correlated with miR-1284 expression. MiR-1284 exerted its function by directly binding to 3'-UTR of HMGB1 and regulates expression of HMGB1. The overexpression of miR-1284 inhibited the cell proliferation and migration, and altered the protein expression of epithelial-mesenchymal transition (EMT)-associated genes (E-cadherin, N-cadherin, Vimentin, and Snail), which was reversed by HMGB1 overexpression. In conclusion, miR-1284 can function as a new regulator to inhibit osteosarcoma cell proliferation and migration by targeting HMGB1.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here