
Extended and globular protein domains in cartilage proteoglycans
Author(s) -
Mats Paulsson,
Matthias Mörgelin,
Hanna Wiedemann,
Matthew Beardmore-Gray,
David G. Dunham,
Timothy E. Hardingham,
Dick Heinegård,
Rupert Timpl,
Juergen Engel
Publication year - 1987
Publication title -
biochemical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.706
H-Index - 265
eISSN - 1470-8728
pISSN - 0264-6021
DOI - 10.1042/bj2450763
Subject(s) - proteoglycan , cartilage , globular protein , globular cluster , chondroitin sulphate , crystallography , biophysics , chemistry , chondroitin sulfate , complementary dna , extracellular matrix , anatomy , microbiology and biotechnology , glycosaminoglycan , biology , biochemistry , physics , quantum mechanics , galaxy , gene
Electron microscopy after rotary shadowing and negative staining of the large chondroitin sulphate proteoglycan from rat chondrosarcoma, bovine nasal cartilage and pig laryngeal cartilage demonstrated a unique multidomain structure for the protein core. A main characteristic is a pair of globular domains (diameter 6-8 nm), one of which forms the N-terminal hyaluronate-binding region. They are connected by a 25 nm-long rod-like domain of limited flexibility. This segment is continued by a 280 nm-long polypeptide strand containing most chondroitin sulphate chains (average length 40 nm) in a brush-like array and is terminated by a small C-terminal globular domain. The core protein showed a variable extent of degradation, including the loss of the C-terminal globular domain and sections of variable length of the chondroitin sulphate-bearing strand. The high abundance (30-50%) of the C-terminal domain in some extracted proteoglycan preparations indicated that this structure is present in the cartilage matrix rather than being a precursor-specific segment. It may contain the hepatolectin-like segment deduced from cDNA sequences corresponding to the 3'-end of protein core mRNA [Doege, Fernandez, Hassell, Sasaki & Yamada (1986) J. Biol. Chem. 261, 8108-8111; Sai, Tanaka, Kosher & Tanzer (1986) Proc. Natl. Acad. Sci. 83, 5081-5085; Oldberg, Antonsson & Heinegård (1987) Biochem. J. 243, 255-259].