
The cAMP-phosphodiesterase 4 (PDE4) controls β-adrenoceptor- and CFTR-dependent saliva secretion in mice
Author(s) -
Abigail Boyd,
Ileana Aragon,
Lina Abou Saleh,
Dylan Southers,
Wito Richter
Publication year - 2021
Publication title -
biochemical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.706
H-Index - 265
eISSN - 1470-8728
pISSN - 0264-6021
DOI - 10.1042/bcj20210212
Subject(s) - saliva , endocrinology , medicine , phosphodiesterase , secretion , cystic fibrosis , phosphodiesterase 3 , muscarinic acetylcholine receptor , atropine , chemistry , receptor , biology , enzyme , biochemistry
Saliva, while often taken for granted, is indispensable for oral health and overall well-being, as inferred from the significant impairments suffered by patients with salivary gland dysfunction. Here, we show that treatment with several structurally distinct PAN-PDE4 inhibitors, but not a PDE3 inhibitor, induces saliva secretion in mice, indicating it is a class-effect of PDE4 inhibitors. In anesthetized mice, while neuronal regulations are suppressed, PDE4 inhibition potentiates a β-adrenoceptor-induced salivation, that is ablated by the β-blocker Propranolol and is absent from homozygous ΔF508-CFTR mice lacking functional CFTR. These data suggest that PDE4 acts within salivary glands to gate saliva secretion that is contingent upon the cAMP/PKA-dependent activation of CFTR. Indeed, PDE4 contributes the majority of total cAMP-hydrolytic capacity in submandibular-, sublingual-, and parotid glands, the three major salivary glands of the mouse. In awake mice, PDE4 inhibitor-induced salivation is reduced by CFTR deficiency or β-blockers, but also by the muscarinic blocker Atropine, suggesting an additional, central/neuronal mechanism of PDE4 inhibitor action. The PDE4 family comprises four subtypes, PDE4A-D. Ablation of PDE4D, but not PDE4A-C, produced a minor effect on saliva secretion, implying that while PDE4D may play a predominant role, PDE4 inhibitor-induced salivation results from the concurrent inactivation of multiple (at least two) PDE4 subtypes. Taken together, our data reveal a critical role for PDE4/PDE4D in controlling CFTR function in an in vivo model and in inducing salivation, hinting at a therapeutic potential of PDE4 inhibition for cystic fibrosis and conditions associated with xerostomia.