z-logo
open-access-imgOpen Access
Structural insights into the promutagenic bypass of the major cisplatin-induced DNA lesion
Author(s) -
Hala Ouzon-Shubeita,
Caroline K. Vilas,
Seongmin Lee
Publication year - 2020
Publication title -
biochemical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.706
H-Index - 265
eISSN - 1470-8728
pISSN - 0264-6021
DOI - 10.1042/bcj20190906
Subject(s) - cisplatin , ap site , dna polymerase , polymerase , chemistry , dna polymerase beta , base excision repair , dna , microbiology and biotechnology , active site , stereochemistry , dna damage , base pair , enzyme , biochemistry , biology , genetics , chemotherapy
The cisplatin-1,2-d(GpG) (Pt-GG) intrastrand cross-link is the predominant DNA lesion generated by cisplatin. Cisplatin has been shown to predominantly induce G to T mutations and Pt-GG permits significant misincorporation of dATP by human DNA polymerase β (polβ). In agreement, polβ overexpression, which is frequently observed in cancer cells, is linked to cisplatin resistance and a mutator phenotype. However, the structural basis for the misincorporation of dATP opposite Pt-GG is unknown. Here, we report the first structures of a DNA polymerase inaccurately bypassing Pt-GG. We solved two structures of polβ misincorporating dATP opposite the 5′-dG of Pt-GG in the presence of Mg2+ or Mn2+. The Mg2+-bound structure exhibits a sub-optimal conformation for catalysis, while the Mn2+-bound structure is in a catalytically more favorable semi-closed conformation. In both structures, dATP does not form a coplanar base pairing with Pt-GG. In the polβ active site, the syn-dATP opposite Pt-GG appears to be stabilized by protein templating and pi stacking interactions, which resembles the polβ-mediated dATP incorporation opposite an abasic site. Overall, our results suggest that the templating Pt-GG in the polβ active site behaves like an abasic site, promoting the insertion of dATP in a non-instructional manner.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here