Premium
A kinetic study of bovine haemoglobin hydrolysis by pepsin immobilized on a functionalized alumina to prepare hydrolysates containing bioactive peptides
Author(s) -
Ticu ElenaLoredana,
VercaigneMarko Dominique,
Huma Anca,
Artenie Vlad,
Toma Ovidiu,
Guillochon Didier
Publication year - 2004
Publication title -
biotechnology and applied biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.468
H-Index - 70
eISSN - 1470-8744
pISSN - 0885-4513
DOI - 10.1042/ba20030131
Subject(s) - chemistry , hydrolysis , pepsin , adsorption , hydrolysate , kinetics , chromatography , nuclear chemistry , organic chemistry , enzyme , physics , quantum mechanics
The hydrolysis kinetics of native and denatured haemoglobin, using pepsin immobilized on aluminium oxide, was studied in order to produce hydrolysates containing bioactive peptides. Pepsin was immobilized on acidic alumina and on 2‐ethanolamine‐ O ‐phosphate (2‐EAOP)‐modified acidic alumina. Surface charge of the two supports was determined as a function of pH. Kinetic studies were performed at 23 °C in 0.1 M acetate buffer, pH 4.5. At this pH, the surface charge of the two supports was almost the same. The coating of alumina by 2‐EAOP only introduced a two carbon spacer between alumina surface and the reaction medium. Adsorption on the two supports of haemoglobin, haem and peptides produced in the course of hydrolyses were compared. Fixation of 2‐EAOP on a pepsin–alumina complex gave hydrolysis kinetics of urea‐denatured haemoglobin close to that obtained with the same amount of pepsin in solution, but with comparatively less adsorption of peptides and complete adsorption of haem. Heterogeneous hydrolyses of haemoglobin with pepsin, immobilized on functionalized alumina, resulted in the presence of VV‐haemorphin‐4, VV‐haemorphin‐7 and neokyotorphin in the supernatants without haem, the presence of which makes further purification difficult.