z-logo
open-access-imgOpen Access
Deglycase-activity oriented screening to identify DJ-1 inhibitors
Author(s) -
Igor Maksimovic,
Efrat Finkin-Groner,
Yoshiyuki Fukase,
Qingfei Zheng,
Shan Sun,
Mayako Michino,
David J. Huggins,
Robert W. Myers,
Yael David
Publication year - 2021
Publication title -
rsc medicinal chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.754
H-Index - 55
ISSN - 2632-8682
DOI - 10.1039/d1md00062d
Subject(s) - methylglyoxal , enzyme , biochemistry , drug discovery , chemistry , glycation , nucleotide , computational biology , biology , receptor , gene
The oncoprotein and Parkinson's disease-associated enzyme DJ-1/PARK7 has emerged as a promiscuous deglycase that can remove methylglyoxal-induced glycation adducts from both proteins and nucleotides. However, dissecting its structural and enzymatic functions remains a challenge due to the lack of potent, specific, and pharmacokinetically stable inhibitors targeting its catalytic site (including Cys106). To evaluate potential drug-like leads against DJ-1, we leveraged its deglycase activity in an enzyme-coupled, fluorescence lactate-detection assay based on the recent understanding of its deglycation mechanism. In addition, we developed assays to directly evaluate DJ-1's esterase activity using both colorimetric and fluorescent substrates. The resulting optimized assay was used to evaluate a library of potential reversible and irreversible DJ-1 inhibitors. The deglycase activity-oriented screening strategy described herein establishes a new platform for the discovery of potential anti-cancer drugs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom