Electrolyte buffering species as oxygen donor shuttles in CO electrooxidation
Author(s) -
Giulia Marcandalli,
Mariana C. O. Monteiro,
Marc T. M. Koper
Publication year - 2021
Publication title -
physical chemistry chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.053
H-Index - 239
eISSN - 1463-9084
pISSN - 1463-9076
DOI - 10.1039/d1cp05030c
Subject(s) - electrolyte , chemistry , overpotential , oxygen evolution , diffusion , inorganic chemistry , oxygen , electrode , attenuated total reflection , electrochemistry , analytical chemistry (journal) , infrared spectroscopy , organic chemistry , physics , thermodynamics
Electrolyte buffering species have been shown to act as proton donors in the hydrogen evolution reaction (HER). Analogously, we study here whether these electrolyte species may participate in other reactions by investigating CO electrooxidation (COOR) on a gold rotating disk electrode. This model system, characterized by fast kinetics, exhibits a diffusion-limited regime, which helps in the identification of the species dictating the diffusion-limited current. Through a systematic concentration dependence study in a variety of buffers, we show that electrolyte buffering species act as oxygen donor shuttles in COOR, lowering the reaction overpotential. A similar correlation between electrolyte and electrocatalytic activity was observed for COOR on a different electrode material (Pt). Probing the electrode-electrolyte interface by attenuated total reflection infrared spectroscopy (ATR-FTIR) and modelling the surface speciation to include the effect of the solution reactions, we propose that the buffer conjugated base generates the oxygen donor ( i.e. OH - ) through its acid-base reaction with water.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom