z-logo
open-access-imgOpen Access
The electron-transfer intermediates of the oxygen evolution reaction (OER) as polarons by in situ spectroscopy
Author(s) -
Hanna Lyle,
Suryansh Singh,
Michael Paolino,
Ilya Vinogradov,
Tanja Cuk
Publication year - 2021
Publication title -
physical chemistry chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.053
H-Index - 239
eISSN - 1463-9084
pISSN - 1463-9076
DOI - 10.1039/d1cp01760h
Subject(s) - polaron , delocalized electron , chemical physics , photochemistry , in situ , spectroscopy , electron transfer , energy transfer , catalysis , oxygen evolution , oxygen , materials science , chemistry , electron , physics , organic chemistry , electrochemistry , electrode , quantum mechanics
The conversion of diffusive forms of energy (electrical and light) into short, compact chemical bonds by catalytic reactions regularly involves moving a carrier from an environment that favors delocalization to one that favors localization. While delocalization lowers the energy of the carrier through its kinetic energy, localization creates a polarization around the carrier that traps it in a potential energy minimum. The trapped carrier and its local distortion-termed a polaron in solids-can play a role as a highly reactive intermediate within energy-storing catalytic reactions but is rarely discussed as such. Here, we present this perspective of the polaron as a catalytic intermediate through recen in situ and time-resolved spectroscopic investigations of photo-triggered electrochemical reactions at material surfaces. The focus is on hole-trapping at metal-oxygen bonds, denoted M-OH*, in the context of the oxygen evolution reaction (OER) from water. The potential energy surface for the hole-polaron defines the structural distortions from the periodic lattice and the resulting "active" site of catalysis. This perspective will highlight how current and future time-resolved, multi-modal probes can use spectroscopic signatures of M-OH* polarons to obtain kinetic and structural information on the individual reaction steps of OER. A particular motivation is to provide the background needed for eventually relating this information to relevant catalytic descriptors by free energies. Finally, the formation of the O-O chemical bond from the consumption of M-OH*, required to release O 2 and store energy in H 2 , will be discussed as the next target for experimental investigations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom