z-logo
open-access-imgOpen Access
Charge regulation mechanism in end-tethered weak polyampholytes
Author(s) -
Debadutta Prusty,
Rikkert J. Nap,
Igal Szleifer,
Mónica Olvera de la Cruz
Publication year - 2020
Publication title -
soft matter
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 170
eISSN - 1744-6848
pISSN - 1744-683X
DOI - 10.1039/d0sm01323d
Subject(s) - mechanism (biology) , charge (physics) , chemistry , chemical physics , biophysics , physics , biology , quantum mechanics
Weak polyampholytes, containing oppositely charged dissociable groups, are expected to be responsive to changes in ionic conditions. Here, we determine structural and thermodynamic properties, including the charged groups' degrees of dissociation, of end-tethered weak polyampholyte layers as a function of salt concentration, pH, and the solvent quality. For diblock weak polyampholytes grafted by their acidic blocks, we find that the acidic monomers increase their charge while the basic monomers decrease their charge with decreasing salt concentration for pH values less than the pKa value of both monomers and vice versa when the pH > pKa. This complex charge regulation occurs because the electrostatic attraction between oppositely charged blocks is stronger than the repulsion between monomers with the same charge in both good and poor solvents when the screening by salt ions is weak. This is evidenced by the retraction of the top block into the bottom layer. In the case of poor solvent conditions to the basic block (the top block), we find lateral segregation of basic monomers into micelles, forming a two-dimensional hexagonal pattern on the surface at intermediate and high pH values for monovalent salt concentrations from 0.01 to 0.1 M. When the solvent is poor to both blocks, we find lateral segregation of the grafted acidic block into lamellae with longitudinal undulations of low and high acidic monomer density. By exploiting weak block polyampholytes, our work expands the parameter space for creating responsive surfaces stable over a wide range of pH and salt concentration.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom