Double membrane formation in heterogeneous vesicles
Author(s) -
Dima Bolmatov,
JanMichael Y. Carrillo,
Bobby G. Sumpter,
John Katsaras,
Maxim O. Lavrentovich
Publication year - 2020
Publication title -
soft matter
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 170
eISSN - 1744-6848
pISSN - 1744-683X
DOI - 10.1039/d0sm01167c
Subject(s) - vesicle , membrane , liposome , chemistry , biophysics , nanotechnology , materials science , biology , biochemistry
Lipids are capable of forming a variety of structures, including multi-lamellar vesicles. Layered lipid membranes are found in cell organelles, such as autophagosomes and mitochondria. Here, we present a mechanism for the formation of a double-walled vesicle (i.e., two lipid bilayers) from a unilamellar vesicle through the partitioning and phase separation of a small molecule. Using molecular dynamics simulations, we show that double membrane formation proceeds via a nucleation and growth process - i.e., after a critical concentration of the small molecules, a patch of double membrane nucleates and grows to cover the entire vesicle. We discuss the implications of this mechanism and theoretical approaches for understanding the evolution and formation of double membranes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom