z-logo
open-access-imgOpen Access
All-atom molecular dynamics simulations of weak polyionic brushes: influence of charge density on the properties of polyelectrolyte chains, brush-supported counterions, and water molecules
Author(s) -
Harnoor Singh Sachar,
Turash Haque Pial,
Bhargav Sai Chava,
Siddhartha Das
Publication year - 2020
Publication title -
soft matter
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 170
eISSN - 1744-6848
pISSN - 1744-683X
DOI - 10.1039/d0sm01000f
Subject(s) - counterion , brush , chemical physics , polyelectrolyte , molecular dynamics , charge (physics) , molecule , chemistry , ion , atom (system on chip) , charge density , computational chemistry , materials science , polymer , physics , organic chemistry , quantum mechanics , computer science , composite material , embedded system
All atom molecular dynamics (MD) simulations of planar Na+-counterion-neutralized polyacrylic acid (PAA) brushes are performed for varying degrees of ionization (and thereby varying charge density) and varying grafting density. Variation in the PE charge density (or degree of ionization) and grafting density leads to massive changes of the properties of the PE molecules (quantified by the changes in the height and the mobility of the PE brushes) as well as the local arrangement and distribution of the brush-supported counterions and water molecules within the brushes. The effect on the counterions is manifested by the corresponding variation of the counterion mobility, counterion concentration, extent of counterion binding to the charged site of the PE brushes, water-in-salt-like structure formation, and counterion-water-oxygen radial distribution function within the PE brushes. On the other hand, the effect on water molecules is manifested by the corresponding variation of water-oxygen-water-oxygen RDF, local water density, water-water and water-PE functional group hydrogen bond networks, static dielectric constant of water molecules, orientational tetrahedral order parameter, and water mobility. Enforcing such varying degree of ionization of weak polyelectrolytes is possible by changing the pH of the surrounding medium. Thus, our results provide insights into the changes in microstructure (at the atomistic level) of weak polyionic brushes at varying pH. We anticipate that this knowledge will prove to be vital for the efficient design of several nano-scale systems employing PE brushes such as nanomechanical gates, current rectifiers, etc.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom