z-logo
open-access-imgOpen Access
Heat-driven acoustic phonons in lamellar nanoplatelet assemblies
Author(s) -
Benjamin T. Diroll,
Vladislav Kamysbayev,
Igor Coropceanu,
Dmitri V. Talapin,
Richard D. Schaller
Publication year - 2020
Publication title -
nanoscale
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.038
H-Index - 224
eISSN - 2040-3372
pISSN - 2040-3364
DOI - 10.1039/d0nr00695e
Subject(s) - materials science , phonon , femtosecond , van der waals force , lamellar structure , nanocrystal , anisotropy , condensed matter physics , excited state , molecular physics , absorption (acoustics) , phase (matter) , chemical physics , laser , nanotechnology , optics , atomic physics , composite material , chemistry , physics , organic chemistry , molecule
Colloidal CdSe nanoplatelets, with the electronic structure of quantum wells, self-assemble into lamellar stacks due to large co-facial van der Waals attractions. These lamellar stacks are shown to display coherent acoustic phonons that are detected from oscillatory changes in the absorption spectrum observed in infrared pump, electronic probe measurements. Rather than direct electronic excitation of the nanocrystals using a femtosecond laser, impulsive transfer of heat from the organic ligand shell, excited at C-H stretching vibrational resonances, to the inorganic core of individual nanoplatelets occurs on a time-scale of <100 ps. This heat transfer drives in-phase longitudinal acoustic phonons of the nanoplatelet lamellae, which are accompanied by subtle deformations along the nanoplatelet short axes. The frequencies of the oscillations vary from 0.7 to 2 GHz (3-8 μeV and 0.5-1 ns oscillation period) depending on the thickness of the nanoplatelets-but not their lateral areas-and the temperature of the sample. Temperature-dependence of the acoustic phonon frequency conveys a substantial stiffening of the organic ligand bonds between nanoplatelets with reduced temperature. These results demonstrate a potential for acoustic modulation of the excitonic structure of nanocrystal assemblies in self-assembled anisotropic semiconductor systems at temperatures at or above 300 K.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom