z-logo
open-access-imgOpen Access
Synthesis of monodisperse high entropy alloy nanocatalysts from core@shell nanoparticles
Author(s) -
Yifan Chen,
Xun Zhan,
Sandra L. A. Bueno,
Ibrahim H. Shafei,
Hannah M. Ashberry,
Kaustav Chatterjee,
Lin Xu,
Yawen Tang,
Sara E. Skrabalak
Publication year - 2021
Publication title -
nanoscale horizons
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.992
H-Index - 38
eISSN - 2055-6764
pISSN - 2055-6756
DOI - 10.1039/d0nh00656d
Subject(s) - nanomaterial based catalyst , dispersity , alloy , nanoparticle , materials science , annealing (glass) , chemical engineering , nanotechnology , metallurgy , polymer chemistry , engineering
High-entropy alloy (HEA) nanoparticles (NPs) hold great promise in electrocatalysis because of their nearly unlimited compositions, tailorable active sites, and high durability. However, the synthesis of these compositionally complex structures as monodisperse NPs remains a challenge by colloidal routes because the different rates of metal precursor reduction lead to phase separation. Here, we report the conversion of core@shell NPs into HEA NPs through annealing, with conservation of sample monodispersity. This potentially general route for high-quality HEA NPs was demonstrated by preparing PdCu@PtNiCo NPs via seed-mediated co-reduction, wherein Pt, Ni, and Co were co-deposited on PdCu seeds in solution. These multimetallic NPs were then converted to single-crystalline and single-phase PdCuPtNiCo NPs through annealing. On account of their small particle size, highly dispersed Pt/Pd content, and low elemental diffusivity, these HEA NPs were found to be a highly efficient and durable catalyst for the oxygen reduction reaction. They were also highly selective for the four-electron transfer pathway. We expect that this new synthetic strategy will facilitate the synthesis of new HEA NPs for catalysis and other applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom