Scalable biocatalytic C–H oxyfunctionalization reactions
Author(s) -
Suman Chakrabarty,
Ye Wang,
Jonathan C. Perkins,
Alison R. H. Narayan
Publication year - 2020
Publication title -
chemical society reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 15.598
H-Index - 513
eISSN - 1460-4744
pISSN - 0306-0012
DOI - 10.1039/d0cs00440e
Subject(s) - chemistry , biocatalysis , key (lock) , scalability , combinatorial chemistry , nanotechnology , biochemical engineering , computer science , organic chemistry , materials science , catalysis , reaction mechanism , engineering , database , computer security
Catalytic C-H oxyfunctionalization reactions have garnered significant attention in recent years with their ability to streamline synthetic routes toward complex molecules. Consequently, there have been significant strides in the design and development of catalysts that enable diversification through C-H functionalization reactions. Enzymatic C-H oxygenation reactions are often complementary to small molecule based synthetic approaches, providing a powerful tool when deployable on preparative-scale. This review highlights key advances in scalable biocatalytic C-H oxyfunctionalization reactions developed within the past decade.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom