z-logo
open-access-imgOpen Access
Rotational spectra of van der Waals complexes: pyrrole–Ne and pyrrole–Ne2
Author(s) -
Isabel Peña,
C. Cabezas
Publication year - 2020
Publication title -
physical chemistry chemical physics/pccp. physical chemistry chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.053
H-Index - 239
eISSN - 1463-9084
pISSN - 1463-9076
DOI - 10.1039/d0cp04580b
Subject(s) - van der waals force , pyrrole , van der waals strain , spectral line , chemistry , computational chemistry , van der waals radius , crystallography , physics , molecule , organic chemistry , quantum mechanics
The van der Waals 1 : 1 and 1 : 2 adducts between the aromatic molecule pyrrole (Pyr) and the rare gas atom neon (Ne) have been investigated using a combination of chirped pulse Fourier transform microwave spectroscopy and quantum-chemical calculations. Rotational spectra of two and three isotopologues of Pyr-Ne and Pyr-Ne2, respectively, arising from the combinations of the 20Ne and 22Ne isotopes, were identified and a partial rs structure determined. Unusual spectral intensities have been observed with a significant enrichment of heavier isotopic species in the jet molecular expansion. The observed rotational constants of Pyr-Ne are consistent with a nearly symmetric prolate top with the Ne atom located above the plane of pyrrole. The trimer presents C2v symmetry with the Ne atoms located one on each side of the ring plane. The experimental 14N nuclear quadrupole coupling constants have been determined for all the isotopologues of Pyr-Ne and Pyr-Ne2 complexes. Similar values to those of isolated pyrrole have been found, which suggests that the electrical gradient field of pyrrole does not change much upon complexation. The observed spectroscopic parameters have been compared with those of other aromatic-rare gas complexes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here