z-logo
open-access-imgOpen Access
In silico discovery of active, stable, CO-tolerant and cost-effective electrocatalysts for hydrogen evolution and oxidation
Author(s) -
Seoin Back,
Jonggeol Na,
Kevin Tran,
Zachary W. Ulissi
Publication year - 2020
Publication title -
physical chemistry chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.053
H-Index - 239
eISSN - 1463-9084
pISSN - 1463-9076
DOI - 10.1039/d0cp03017a
Subject(s) - density functional theory , catalysis , in silico , hydrogen , combinatorial chemistry , chemistry , computer science , materials science , computational chemistry , organic chemistry , biochemistry , gene
Various databases of density functional theory (DFT) calculations for materials and adsorption properties are currently available. Using the Materials Project and GASpy databases of material stability and binding energies (H* and CO*), respectively, we evaluate multiple aspects of catalysts to discover active, stable, CO-tolerant, and cost-effective hydrogen evolution and oxidation catalysts. Finally, we suggest a few candidate materials for future experimental validations. We highlight that the stability analysis is easily obtainable but provides invaluable information to assess thermodynamic and electrochemical stability, bridging the gap between simulations and experiments. Furthermore, it reduces the number of expensive DFT calculations required to predict catalytic activities of surfaces by filtering out unstable materials.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom