z-logo
open-access-imgOpen Access
Configuration mixing upon reorganization of dihedral angle induces rapid intersystem crossing in organic photoredox catalyst
Author(s) -
Hwon Kim,
Gregory D. Scholes
Publication year - 2020
Publication title -
physical chemistry chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.053
H-Index - 239
eISSN - 1463-9084
pISSN - 1463-9076
DOI - 10.1039/d0cp01911a
Subject(s) - intersystem crossing , dihedral angle , photochemistry , catalysis , mixing (physics) , electron transfer , photocatalysis , excited state , substrate (aquarium) , photoredox catalysis , chemistry , materials science , atomic physics , physics , organic chemistry , molecule , quantum mechanics , hydrogen bond , singlet state , oceanography , geology
A long excited state lifetime is a desirable quality of photocatalysts because it enables a higher probability of energy or electron transfer from the photocatalyst to a substrate. However, achieving a long lifetime in organic (metal-free) catalysts is challenged by competing rapid nonradiative relaxation from excited states and relatively slow intersystem crossing into long-lived states with different spin multiplicity. In this work, we propose an intersystem crossing mechanism in heavy-metal free photocatalyst that results from reorganization of a dihedral angle between moieties. The relaxation of orthogonality of the dihedral angle and increasing the orbital overlap between the two components of the molecule changes the coupling between the configurations of singlet and triplet states, which in turn results in larger spin orbit coupling between the two manifolds as the molecule twists. We predict that this enables intersystem crossing to outcompete the singlet state lifetime.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom