z-logo
open-access-imgOpen Access
Embedding of atoms into the nanopore sites of the C6N6and C6N8porous carbon nitride monolayers with tunable electronic properties
Author(s) -
A. Bafekry,
Catherine Stampfl,
Berna Akgenç,
Bohayra Mortazavi,
Mitra Ghergherehchi,
Ch. V. Nguyen
Publication year - 2020
Publication title -
physical chemistry chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.053
H-Index - 239
eISSN - 1463-9084
pISSN - 1463-9076
DOI - 10.1039/d0cp00093k
Subject(s) - magnetic moment , monolayer , ferromagnetism , fermi level , condensed matter physics , materials science , atom (system on chip) , metal , half metal , electron , spintronics , nanotechnology , physics , metallurgy , quantum mechanics , embedded system , computer science
Using first-principles calculations, we study the effect of embedding various atoms into the nanopore sites of both C6N6 and C6N8 monolayers. Our results indicate that the embedded atoms significantly affect the electronic and magnetic properties of C6N6 and C6N8 monolayers and lead to extraordinary and multifarious electronic properties, such as metallic, half-metallic, spin-glass semiconductor and dilute-magnetic semiconductor behaviour. Our results reveal that the H atom concentration dramatically affects the C6N6 monolayer. On increasing the H coverage, the impurity states also increase due to H atoms around the Fermi-level. C6N6 shows metallic character when the H atom concentration reaches 6.25%. Moreover, the effect of charge on the electronic properties of both Cr@C6N6 and C@C6N8 is also studied. Cr@C6N6 is a ferromagnetic metal with a magnetic moment of 2.40 μB, and when 0.2 electrons are added and removed, it remains a ferromagnetic metal with a magnetic moment of 2.57 and 2.77 μB, respectively. Interestingly, one can observe a semi-metal, in which the VBM and CBM in both spin channels touch each other near the Fermi-level. C@C6N8 is a semiconductor with a nontrivial band gap. When 0.2 electrons are removed, it remains metallic, and under excess electronic charge, it exhibits half-metallic behaviour.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom