z-logo
open-access-imgOpen Access
Astatine partitioning between nitric acid and conventional solvents: indication of covalency in ketone complexation of AtO+
Author(s) -
Jonathan D. Burns,
E. E. Tereshatov,
Mallory A. McCarthy,
Lauren A. McIntosh,
G. Tăbăcaru,
Xin Yang,
Michael B. Hall,
S. J. Yennello
Publication year - 2020
Publication title -
chemical communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.837
H-Index - 333
eISSN - 1364-548X
pISSN - 1359-7345
DOI - 10.1039/d0cc03804k
Subject(s) - methyl isobutyl ketone , chemistry , ketone , nitric acid , extraction (chemistry) , astatine , octanol , nuclear chemistry , aqueous solution , yield (engineering) , partition coefficient , inorganic chemistry , organic chemistry , materials science , physics , quantum mechanics , voltage , metallurgy
Astatine-211 has been produced at Texas A&M University on the K150 cyclotron, with a yield of 890 ± 80 MBq through the 209 Bi(α,2n) 211 At reaction via an 8 h bombardment with a beam current of 4-8 μA and an α-particle beam energy of 28.8 MeV. The target was then dissolved in HNO 3 and the extraction of 211 At was investigated into a variety of organic solvents in 1-3 M HNO 3 . Extraction of 211 At with distribution ratios as high as 11.3 ± 0.6, 12.3 ± 0.8, 42.2 ± 2.2, 69 ± 4, and 95 ± 6 were observed for diisopropyl ether, 1-decanol, 1-octanol, 3-octanone, and methyl isobutyl ketone, respectively, while the distribution ratios for 207 Bi were ≤0.05 in all cases. The extraction of 211 At into both methyl isobutyl ketone and 3-octanone showed a strong, linear dependence on the HNO 3 initial aqueous concentration and better extraction than other solvents. DFT calculations show stronger binding between the carbonyl oxygen of the ketone and the At metal center.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom