z-logo
open-access-imgOpen Access
Dynamic single-cell intracellular pH sensing using a SERS-active nanopipette
Author(s) -
Jing Guo,
Alberto Seseña Rubfiaro,
Yanhao Lai,
Joseph Moscoso,
Feng Chen,
Yuan Liu,
Xuewen Wang,
Jin He
Publication year - 2020
Publication title -
the analyst
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.998
H-Index - 153
eISSN - 1364-5528
pISSN - 0003-2654
DOI - 10.1039/d0an00838a
Subject(s) - intracellular , biophysics , extracellular , hela , plasmon , surface enhanced raman spectroscopy , nanotechnology , raman spectroscopy , colloidal gold , single cell analysis , surface plasmon resonance , chemistry , materials science , nanoparticle , cell , biochemistry , optoelectronics , biology , raman scattering , physics , optics
Glass nanopipettes have shown promise for applications in single-cell manipulation, analysis, and imaging. In recent years, plasmonic nanopipettes have been developed to enable surface-enhanced Raman spectroscopy (SERS) measurements for single-cell analysis. In this work, we developed a SERS-active nanopipette that can be used to perform long-term and reliable intracellular analysis of single living cells with minimal damage, which is achieved by optimizing the nanopipette geometry and the surface density of the gold nanoparticle (AuNP) layer at the nanopipette tip. To demonstrate its ability in single-cell analysis, we used the nanopipette for intracellular pH sensing. Intracellular pH (pH i ) is vital to cells as it influences cell function and behavior and pathological conditions. The pH sensitivity was realized by simply modifying the AuNP layer with the pH reporter molecule 4-mercaptobenzoic acid. With a response time of less than 5 seconds, the pH sensing range is from 6.0 to 8.0 and the maximum sensitivity is 0.2 pH units. We monitored the pH i change of individual HeLa and fibroblast cells, triggered by the extracellular pH (pH e ) change. The HeLa cancer cells can better resist pH e change and adapt to the weak acidic environment. Plasmonic nanopipettes can be further developed to monitor other intracellular biomarkers.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom