z-logo
open-access-imgOpen Access
Aromatic character of [Au13]5+ and [MAu12]4+/6+ (M = Pd, Pt) cores in ligand protected gold nanoclusters – interplay between spherical and planar σ-aromatics
Author(s) -
Nikita Fedik,
Alexander I. Boldyrev,
Àlvaro Muñoz-Castro
Publication year - 2019
Publication title -
physical chemistry chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.053
H-Index - 239
eISSN - 1463-9084
pISSN - 1463-9076
DOI - 10.1039/c9cp04477a
Subject(s) - nanoclusters , ligand (biochemistry) , chemistry , planar , character (mathematics) , crystallography , organic chemistry , biochemistry , computer graphics (images) , receptor , geometry , mathematics , computer science
The most characteristic feature of planar π-aromatics is the ability to sustain a long-range shielding cone under a magnetic field oriented in a specific direction. In this article, we showed that similar magnetic responses can be found in σ-aromatic and spherical aromatic systems. For [Au 13 ] 5+ , long-range characteristics of the induced magnetic field in the bare icosahedral core are revealed, which are also found in the ligand protected [Au 25 (SH) 18 ] - model, proving its spherical aromatic properties, also supported by the AdNDP analysis. Such properties are given by the 8-ve of the structural core satisfying the Hirsch 2(N + 1) 2 rule, which is also found in the isoelectronic [M@Au 12 ] 4+ core, a part of the [MAu 24 (SR) 18 ] 2- (M = Pd, Pt) cluster. This contrasts with the [M@Au 12 ] 6+ core in [MAu 24 (SR) 18 ] 0 (M = Pd, Pt), representing 6-ve superatoms, which exhibit characteristics of planar σ-aromatics. Our results support the spherical aromatic character of stable superatoms, whereas the 6-ve intermediate electron counts satisfy the 4N + 2 rule (applicable for both π- and σ-aromatics), showing the reversable and controlled interplay between 3D spherical and 2D σ-aromatic clusters.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom