Electron bifurcation: progress and grand challenges
Author(s) -
Jonathon L. Yuly,
Carolyn E. Lubner,
Peng Zhang,
David N. Beratan,
John W. Peters
Publication year - 2019
Publication title -
chemical communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.837
H-Index - 333
eISSN - 1364-548X
pISSN - 1359-7345
DOI - 10.1039/c9cc05611d
Subject(s) - electron , bifurcation , atomic physics , physics , materials science , chemistry , quantum mechanics , nonlinear system
Electron bifurcation moves electrons from a two-electron donor to reduce two spatially separated one-electron acceptors. If one of the electrons reduces a high-potential (lower energy) acceptor, then the other electron may proceed "uphill" to reduce a low-potential (higher energy) acceptor. This mechanism is now considered the third mode of energy transduction in biology, and offers promise for the development of novel bioinspired energy conversion strategies. Nature uses electron bifurcation to realize highly sought-after reactions: reversible CO2 reduction, nitrogen fixation, and hydrogen production. In this review, we summarize the current understanding of electron bifurcation, including both recent progress and outstanding questions in understanding and developing artificial electron bifurcation systems.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom